# Reaction of heterocumulenes $\mathrm{R}-\mathrm{N}=\mathrm{C}=\mathrm{N}-\mathrm{R}$ and $\mathrm{R}-\mathrm{P}=\mathrm{C}=\mathrm{P}-\mathrm{R}$ with a di-iron aminocarbene complex 

Maryse Gouygou, Jean-Claude Daran, Bernd Heim and Yves Jeannin<br>Laboratoire de Chimie des Métaux de Transition, URA 419, Université Pierre et Marie Curie, 75252 Paris Cédex 05 (France)

(Received February 18, 1993)


#### Abstract

Reaction of $\mathrm{R}-\mathrm{N}=\mathrm{C}=\mathrm{N}-\mathrm{R}\left(\mathrm{R}=\boldsymbol{p}-\mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{4}\right)$ and $\mathrm{R}-\mathrm{P}=\mathrm{C}=\mathrm{P}-\mathrm{R}\left(\mathrm{R}=2,4,6-{ }^{\mathrm{t}} \mathrm{Bu}_{3} \mathrm{C}_{6} \mathrm{H}_{2}\right.$ ) with the di-iron aminocarbene complex $\left[\mathrm{Fe}_{2}(\mathrm{CO})_{7}\left\{\mu-\mathrm{C}(\mathrm{Ph}) \mathrm{C}\left(\mathrm{NEt}_{2}\right)\right\}\right]$ (1c) gave corresponding complexes $\left[\mathrm{Fe}_{2}(\mathrm{CO})_{6}\left\{\mathrm{C}\left(\mathrm{Ph}_{2}\right) \mathrm{C}\left(\mathrm{NEt}_{2}\right) \mathrm{C}\left(\mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{Me}\right) \mathrm{N}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)\right]\right]$ (2) and [ $\mathrm{Fe}_{2}(\mathrm{CO})_{6}\left\{\mathrm{C}\left(\mathrm{Ph}^{2}\right) \mathrm{C}\left(\mathrm{NEt}_{2}\right) \mathrm{CPC}_{6} \mathrm{H}_{2}{ }^{\left.\left.\left.{ }^{\prime} \mathrm{Bu}_{3}\right) \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{2}{ }^{\text {t }} \mathrm{Bu}_{3}\right)\right\}\right] \text { (4), resulting from a coupling reaction with carbon-carbon bond forma- }}\right.$ tion. $\left[\mathrm{Fe}_{2}(\mathrm{CO})_{5}\left(\mathrm{CNC}_{6} \mathrm{H}_{4} \mathrm{Me}\right)\left(\mathrm{C}(\mathrm{Ph}) \mathrm{C}\left(\mathrm{NEt}_{2}\right) \mathrm{N}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)\right.\right.$ ]], complex 3, obtained in the reaction with $\mathrm{R}-\mathrm{N}=\mathrm{C}=\mathrm{N}-\mathrm{R}$, resulted from $\mathrm{C}=\mathrm{N}$ bond rupture and insertion of a nitrene fragment into the $\mathrm{Fe}=\mathrm{C}$ bond. Complexes $2-4$ were characterized by X -ray diffraction. The different geometries of complexes 2 and 4 are discussed. The formation of these complexes may be explained by cycloaddition on the $\mathrm{Fe}=\mathrm{C}$ metal-carbene bond.


## 1. Introduction

Dinuclear aminocarbene complexes $\left[\mathrm{Fe}_{2}(\mathrm{CO})_{7}\{\mu\right.$ $\left.\left.\mathrm{C}(\mathrm{R}) \mathrm{C}\left(\mathrm{NEt}_{2}\right)\right]\right](1)$, obtained by the action of $\left[\mathrm{Fe}_{2}(\mathrm{CO})_{9}\right]$ on aminoalkynes $\mathrm{R}-\mathrm{C}=\mathrm{C}-\mathrm{NEt}_{2}$ [1a-c], have a bridging carbene and a terminal aminocarbene group (Scheme 1). Because the insertion of an organic molecule or of an inorganic functional group into a metal-carbon bond represents a basic step for the metal-promoted functipnalization of an organic group, previous work in our group has focussed on the study of the reactivity of these complexes with various heterocumulenes (A-C). In all cases reactions occur at the terminal $\mathrm{Fe}=\mathrm{C}$ carbene bond. We have observed $\mathrm{C}=\mathrm{S}$ bond rupture and insertion of an S atom into the $\mathrm{Fe}=\mathrm{C}$ double bond for A [1b], insertion of an S atom into the $\mathrm{Fe}=\mathrm{C}$ double bond and cycloaddition between $\mathrm{N}=\mathrm{C}$ and $\mathrm{Fe}=\mathrm{C}$ for B [2], and cycloaddition between $\mathrm{N}=\mathrm{C}$ and $\mathrm{Fe}=\mathrm{C}$ for C [2]. A preliminary report on the reaction with the heterocumulene $p$-tolylcarbodiimide [3] (type D) shows that both cycloaddition and insertion reactions occur, as for B.

[^0]

The more recently synthesized diphosphaallene R -$\mathrm{P}=\mathrm{C}=\mathrm{P}-\mathrm{R}$ [4], the phosphorus analogue of carbodiimide, provides opportunities for comparative studies. The chemistry of diphosphaallene is much less developed than that of carbodiimide. The first reports have described diphosphaallene $\eta_{1}$ and $\eta_{2}$ transition metal complexes [5]. Interesting examples have recently appeared of facile hydrogen migration reactions in ligated diphosphaallene metal carbonyl complexes [6].

This paper describes (i) the full results of our studies of the reactions of the di-iron aminocarbene complex 1c with heterocumulenes of type D and E, (ii) a comparison of the structures of the resultant complexes and (iii) a possible mechanism of their formation.

## 2. Results and discussion

### 2.1. Reaction of carbodiimide with complex 1c

Di-p-tolylcarbodiimide reacted with complex 1c in hexane at $70^{\circ} \mathrm{C}$ to yield two dinuclear complexes, 2 and


Scheme 1.

3, as major products after 4 h [3] (Scheme 2). These two compounds, separated by column chromatography, were characterized by IR and ${ }^{1} \mathrm{H}$ NMR spectroscopy, mass spectrometry, and single crystal X-ray diffraction analysis. The structures are shown in Figs. 1 and 2. Selected interatomic bond distances and angles are listed in Tables 1 and 2.

Compound 2 is dinuclear with an $\mathrm{Fe}-\mathrm{Fe}$ bond length of $2.46 \AA$. This complex results from C-C bond formation between the central carbon of the carbodiimide and the carbon atom of 1 c bearing the diethylaminogroup. The $\mathrm{C}(\mathrm{Ph})-\mathrm{C}\left(\mathrm{NEt}_{2}\right)-\mathrm{C}\left(\mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{Me}\right)-\mathrm{N}\left(\mathrm{C}_{6} \mathrm{H}_{4}-\right.$ Me ) ligand bridges the two iron atoms through $\mathrm{C}_{1}, \mathrm{C}_{2}$ and $\mathrm{N}_{2}$, to form a ferrapyrrolidone ring. The $\mathrm{C}_{1}$ and $\mathrm{C}_{2}$ atoms are asymmetrically $\pi$-bonded to $\mathrm{Fe}_{1}\left(\mathrm{C}_{1}-\mathrm{Fe}_{1}\right.$ $=2.30 \AA, \mathrm{C}_{2}-\mathrm{Fe}_{1}=2.13 \AA$ ). The $\left[\mathrm{Fe}_{1}-\mathrm{C}_{1}-\mathrm{C}_{2}\right]$ and $\left[\mathrm{Fe}_{2}-\mathrm{C}_{1}-\mathrm{C}_{2}\right.$ ] planes make a dihedral angle of $117.8^{\circ}$, similar to that of $\mathbf{1 c}\left(110.3^{\circ}\right)$. In contrast, the nitrogen atom $\mathrm{N}_{2}$ is symmetrically bound to both iron atoms $\left(\mathrm{N}_{2}-\mathrm{Fe}_{1}=2.00 \AA, \mathrm{~N}_{2}-\mathrm{Fe}_{2}=1.99 \AA\right.$ ). The non-planar arrangement around $\mathrm{N}_{1}$ and the $\mathrm{C}_{1}-\mathrm{N}_{1}$ distance (1.38 $\AA$ ) are consistent with a $\mathrm{C}_{1}-\mathrm{N}_{1}$ single bond. In solution, the equivalence of the two $N$-ethyl groups observed by ${ }^{1} \mathrm{H}$ NMR spectroscopy indicates free rotation about the $C_{1}-N_{1}$ bond, consistent with a single bond. The carbon $\mathrm{C}_{3}$ of the imine group is not bonded to $\mathrm{Fe}_{1}$, as indicated by the $\mathrm{C}_{3}-\mathrm{Fe}_{1}$ distance ( $2.64 \AA$ ). The $\mathrm{C}_{3}-\mathrm{N}_{3}$ bond length ( $1.26 \AA$ ) is consistent with a $\mathrm{C}=\mathrm{N}$ double bond (IR band at $1640 \mathrm{~cm}^{-1}$ ). Similar metallapyrrolidone complexes have been obtained by cycloaddition of isocyanate to the di-iron aminocarbene complex 1 [2].

Compound 3 is also dinuclear with an $\mathrm{Fe}-\mathrm{Fe}$ bond length of $2.44 \AA$. It contains a nitrene bridging the two iron atoms to form two fused ferraazeterings $\mathrm{Fe}_{1}-\mathrm{C}_{2}-$


Scheme 2.


Fig. 1. View of molecule 2, $\left[\mathrm{Fe}_{2}(\mathrm{CO})_{6}\left(\mathrm{C}\left(\mathrm{Ph}^{2}\right) \mathrm{C}\left(\mathrm{NEt}_{2}\right) \mathrm{C}\left(\mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{Me}\right)\right.\right.$ $\left.\left.\mathrm{N}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)\right\}\right]$.
$\mathrm{C}_{1}-\mathrm{N}_{3}$ and $\mathrm{Fe}_{2}-\mathrm{C}_{2}-\mathrm{C}_{1}-\mathrm{N}_{3}$, sharing $\mathrm{N}_{3}-\mathrm{C}_{1}$ and $\mathrm{C}_{2}-\mathrm{C}_{1}$ edges. The $\mathrm{N}_{3}$ and $\mathrm{C}_{2}$ atoms symmetrically bridge both iron atoms $\left(\mathrm{N}_{3}-\mathrm{Fe}_{1}=2.01 \AA, \mathrm{~N}_{3}-\mathrm{Fe}_{2}=1.97 \AA, \mathrm{C}_{2}-\right.$ $\mathrm{Fe}_{1}=1.98 \AA, \mathrm{C}_{2}-\mathrm{Fe}_{2}=2.08 \AA$ ). In contrast, the observed distances $\mathrm{C}_{1}-\mathrm{Fe}_{1}=2.47 \AA$ and $\mathrm{C}_{1}-\mathrm{Fe}_{2}=2.26$


Fig. 2. View of molecule 3, $\left[\mathrm{Fe}_{2}(\mathrm{CO})_{5}\left(\mathrm{CNC}_{6} \mathrm{H}_{4} \mathrm{Me}\right)\{\mathrm{C}(\mathrm{Ph}) \mathrm{C}\right.$ $\left.\left.\left(\mathrm{NEt}_{2}\right) \mathrm{N}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)\right\}\right]$.
$\AA$ show that the carbon atom $\mathrm{C}_{1}$ is asymmetrical with respect to $\mathrm{Fe}_{1}$ and $\mathrm{Fe}_{2}$ atoms. The $\mathrm{C}_{1}-\mathrm{N}_{1}$ bond is short ( $1.36 \AA$ ), the $\mathrm{N}_{1}$ atom is planar (sum of angles close to $359.7^{\circ}$ ), and the $N$-ethyl groups are non-equivalent, as shown by ${ }^{1} \mathrm{H}$ NMR spectroscopy, due to hindered rotation about the $\mathrm{C}_{1}-\mathrm{N}_{1}$ bond. All these factors are indicative of a partial multiple-bonding interaction formed by donation of the lone pair of $\mathrm{N}_{1}$ to $\mathrm{C}_{1}$. This suggests a zwitterionic character for the molecule that would place a positive charge on $\mathrm{N}_{1}$ and a negative charge on $\mathrm{Fe}_{1}$. Complex 3 results from cleavage of one $\mathrm{C}=\mathrm{N}$ bond of the carbodiimide and insertion of the nitrene fragment into the $\mathrm{Fe}=\mathrm{C}$ bond of $\mathbf{1 c}$. The fragmentation of the carbodiimide gives an isonitrile which replaces a CO at the $\mathrm{Fe}_{2}$ atom. The $\mathrm{C}_{3}-\mathrm{N}_{2}$ bond length ( $1.15 \AA$ ) indicates a $\mathrm{C} \equiv \mathrm{N}$ triple bond (IR band at $2130 \mathrm{~cm}^{-1}$ ). The structure of 3 may be described as a basket-like structure with the two $\mathrm{Fe}_{1}-\mathrm{C}_{2}-\mathrm{Fe}_{2}$ and $\mathrm{Fe}_{1}-\mathrm{N}_{3}-\mathrm{Fe}_{2}$ triangles forming the basket and the $\mathrm{C}-\mathrm{NEt}_{2}$ representing the handle. A similar structure, in which the nitrene fragment is replaced by sulphur, was obtained from reaction of

TABLE 1. Selected interatomic distances ( $\AA$ ) and bond angles (deg.) for compound (2), $\left[\mathrm{Fe}_{2}(\mathrm{CO})_{6}\left(\mathrm{C}(\mathrm{Ph}) \mathrm{C}\left(\mathrm{NEt}_{2}\right) \mathrm{C}\left(\mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{Me}\right) \mathrm{N}\left(\mathrm{C}_{6} \mathrm{H}_{4}-\right.\right.\right.$ Me )]

| $\mathrm{Fe}(1)-\mathrm{Fe}(2)$ | $2.459(2)$ | $\mathrm{Fe}(2)-\mathrm{C}(2)$ | $2.01(1)$ |
| :--- | :---: | :--- | :---: |
| $\mathrm{Fe}(2)-\mathrm{N}(2)$ | $1.988(8)$ | $\mathrm{Fe}(2)-\mathrm{C}(21)$ | $1.79(1)$ |
| $\mathrm{Fe}(2)-\mathrm{C}(22)$ | $1.80(1)$ | $\mathrm{Fe}(2)-\mathrm{C}(23)$ | $1.77(1)$ |
| $\mathrm{Fe}(1)-\mathrm{C}(1)$ | $2.30(1)$ | $\mathrm{Fe}(1)-\mathrm{C}(2)$ | $2.13(1)$ |
| $\mathrm{Fe}(1)-\mathrm{N}(2)$ | $2.000(8)$ | $\mathrm{Fe}(1)-\mathrm{C}(11)$ | $1.83(2)$ |
| $\mathrm{Fe}(1)-\mathrm{C}(12)$ | $1.79(1)$ | $\mathrm{Fe}(1)-\mathrm{C}(13)$ | $1.77(1)$ |
| $\mathrm{C}(1)-\mathrm{C}(2)$ | $1.44(1)$ | $\mathrm{N}(3)-\mathrm{C}(311)$ | $1.43(1)$ |
| $\mathrm{C}(1)-\mathrm{C}(3)$ | $1.48(1)$ | $\mathrm{C}(1)-\mathrm{N}(1)$ | $1.38(1)$ |
| $\mathrm{C}(2)-\mathrm{C}(4)$ | $1.46(1)$ | $\mathrm{C}(3)-\mathrm{N}(2)$ | $1.45(1)$ |
| $\mathrm{C}(3)-\mathrm{N}(3)$ | $1.26(1)$ | $\mathrm{N}(2)-\mathrm{C}(211)$ | $1.44(1)$ |
| $\mathrm{N}(1)-\mathrm{C}(121)$ | $1.43(1)$ | $\mathrm{N}(1)-\mathrm{C}(111)$ | $1.59(2)$ |
| $\mathrm{O}-\mathrm{C}(\mathrm{av})$ | $1.13(1)$ |  |  |
| $\mathrm{C}(11)-\mathrm{Fe}(1)-\mathrm{N}(2)$ | $95.8(5)$ | $\mathrm{C}(12)-\mathrm{Fe}(1)-\mathrm{N}(2)$ | $97.7(4)$ |
| $\mathrm{C}(12)-\mathrm{Fe}(1)-\mathrm{C}(11)$ | $104.0(6)$ | $\mathrm{C}(13)-\mathrm{Fe}(1)-\mathrm{C}(11)$ | $91.2(8)$ |
| $\mathrm{C}(13)-\mathrm{Fe}(1)-\mathrm{N}(2)$ | $167.6(5)$ | $\mathrm{C}(13)-\mathrm{Fe}(1)-\mathrm{C}(12)$ | $90.4(6)$ |
| $\mathrm{N}(2)-\mathrm{Fe}(2)-\mathrm{C}(2)$ | $79.8(4)$ | $\mathrm{C}(21)-\mathrm{Fe}(2)-\mathrm{C}(2)$ | $91.8(4)$ |
| $\mathrm{C}(21)-\mathrm{Fe}(2)-\mathrm{N}(2)$ | $102.9(4)$ | $\mathrm{C}(22)-\mathrm{Fe}(2)-\mathrm{C}(2)$ | $167.8(5)$ |
| $\mathrm{C}(22)-\mathrm{Fe}(2)-\mathrm{N}(2)$ | $93.5(5)$ | $\mathrm{C}(22)-\mathrm{Fe}(2)-\mathrm{C}(21)$ | $99.7(5)$ |
| $\mathrm{C}(23)-\mathrm{Fe}(2)-\mathrm{C}(2)$ | $93.6(5)$ | $\mathrm{C}(23)-\mathrm{Fe}(2)-\mathrm{N}(2)$ | $159.4(5)$ |
| $\mathrm{C}(23)-\mathrm{Fe}(2)-\mathrm{C}(21)$ | $96.7(5)$ | $\mathrm{C}(23)-\mathrm{Fe}(2)-\mathrm{C}(22)$ | $89.1(6)$ |
| $\mathrm{C}(3)-\mathrm{C}(1)-\mathrm{C}(2)$ | $112.4(8)$ | $\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$ | $128.5(9)$ |
| $\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(3)$ | $118.3(9)$ | $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{Fe}(2)$ | $111.4(7)$ |
| $\mathrm{C}(4)-\mathrm{C}(2)-\mathrm{Fe}(2)$ | $119.4(7)$ | $\mathrm{C}(4)-\mathrm{C}(2)-\mathrm{C}(1)$ | $124.3(9)$ |
| $\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(1)$ | $104.4(8)$ | $\mathrm{N}(3)-\mathrm{C}(3)-\mathrm{C}(1)$ | $135.3(9)$ |
| $\mathrm{N}(3)-\mathrm{C}(3)-\mathrm{N}(2)$ | $120.3(8)$ | $\mathrm{C}(111)-\mathrm{N}(1)-\mathrm{C}(1)$ | $109.8(21)$ |
| $\mathrm{C}(121)-\mathrm{N}(1)-\mathrm{C}(1)$ | $120.7(9)$ | $\mathrm{C}(121)-\mathrm{N}(1)-\mathrm{C}(111)$ | $104.1(9)$ |
| $\mathrm{Fe}(2)-\mathrm{N}(2)-\mathrm{Fe}(1)$ | $76.1(3)$ | $\mathrm{C}(3)-\mathrm{N}(2)-\mathrm{Fe}(1)$ | $98.6(6)$ |
| $\mathrm{C}(3)-\mathrm{N}(2)-\mathrm{Fe}(2)$ | $107.1(6)$ | $\mathrm{C}(211)-\mathrm{N}(2)-\mathrm{Fe}(1)$ | $131.1(5)$ |
| $\mathrm{C}(211)-\mathrm{N}(2)-\mathrm{Fe}(2)$ | $119.6(6)$ | $\mathrm{C}(211)-\mathrm{N}(2)-\mathrm{C}(3)$ | $116.5(7)$ |
| $\mathrm{C}(311)-\mathrm{N}(3)-\mathrm{C}(3)$ | $124.5(8)$ | $\mathrm{O}-\mathrm{C}-\mathrm{Fe}(\mathrm{av})$ | $175.4(21)$ |

other heterocumulenes such as $\mathrm{CS}_{2}$ and $\mathrm{R}-\mathrm{N}=\mathrm{C}=\mathrm{S}$ with 1 [1b,2].

### 2.2. Reaction of diphosphaallene with complex lc

1,3-Diphosphaallene reacted with complex 1c in refluxing hexane to yield complex 4 as the major product (Scheme 3). Contrary to the reaction with carbodiimide to give 2 and 3, the phosphorus analogue of complex 3 was not isolated. Compound 4 was characterized by IR, ${ }^{1} \mathrm{H}$ NMR and ${ }^{31} \mathrm{P}$ NMR spectroscopy and mass spectrometry. The structure of 4 was established by X-ray diffraction analysis (Fig. 3). Selected bond distances and angles are given in Table 3. As in complex 2, 4 results from $\mathrm{C}-\mathrm{C}$ bond formation between the central carbon of the diphosphaallene and the carbon atom carrying the $\mathrm{NEt}_{2}$ group of $\mathbf{1 c}$. This complex is dinuclear with a metal-metal bond of 2.49 A . The $\mathrm{C}(\mathrm{Ph})-$ $\mathrm{C}\left(\mathrm{NEt}_{2}\right)-\mathrm{C}\left(\mathrm{PC}_{6} \mathrm{H}_{2}{ }^{\mathrm{t}} \mathrm{Bu}_{3}\right)-\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{2}{ }^{\mathrm{t}} \mathrm{Bu}_{3}\right)$ ligand bridges the two iron atoms through the $\mathrm{C}_{2}$ and $\mathrm{P}_{1}$ atoms. $\mathrm{P}_{1}$ and $C_{2}$ are symmetrical with respect to each iron atom within experimental error ( $\mathrm{P}_{1}-\mathrm{Fe}_{1}=2.23(2) \AA, \mathrm{P}_{1}-\mathrm{Fe}_{2}$ $\left.=2.20(2) \AA, \mathrm{C}_{2}-\mathrm{Fe}_{1}=2.25(4) \AA, \mathrm{C}_{2}-\mathrm{Fe}_{2}=1.99(4) \AA\right)$. The distances $\mathrm{C}_{1}-\mathrm{Fe}_{1}=2.63 \AA, \mathrm{C}_{1}-\mathrm{Fe}_{2}=2.98 \AA$, $\mathrm{C}_{3}-\mathrm{Fe}_{1}=3.06 \AA$ and $\mathrm{C}_{3}-\mathrm{Fe}_{2}=3.26 \AA$ show that the $\mathrm{C}_{1}$ and $\mathrm{C}_{3}$ atoms are bonded neither to $\mathrm{Fe}_{1}$ nor to $\mathrm{Fe}_{2}$. Although the $\mathrm{N}_{1}$ atom has a planar geometry (sum of angles equal to $358.6^{\circ}$ ), the $\mathrm{C}_{1}-\mathrm{N}_{1}$ bond length (1.33(5) $\AA$ ) is marginally longer than a $\mathrm{C}=\mathrm{N}$ bond when estimated standard deviation is taken into account. The carbon-nitrogen double bond in iminium salts lics within the range $1.28-1.38 \AA$. The $\mathrm{C}_{1}-\mathrm{N}_{1}$ double bond character in 4 is probably weak, because hindered rotation about the $\mathrm{C}_{1}-\mathrm{N}_{1}$ bond is not evident at $25^{\circ} \mathrm{C}$. Both ethyl groups are equivalent, as judged by ${ }^{1} \mathrm{H}$ NMR spectroscopy. The shortest $\mathrm{C}-\mathrm{P}$ bond length ( $\mathrm{C}_{3}-\mathrm{P}_{2}=1.66(5) \AA$ ) suggests a $\mathrm{P}=\mathrm{C}$ double bond. Although the $\mathrm{N}_{1}, \mathrm{C}_{1}, \mathrm{C}_{3}$ and $\mathrm{P}_{2}$ atoms are in the same plane, the $\mathrm{NEt}_{2}$ group is twisted out of this plane ( $47.9^{\circ}$ ). Compound 4 can considered to be a basket-like structure with the two $\mathrm{Fe}_{1}-\mathrm{C}_{2}-\mathrm{Fe}_{2}$ and $\mathrm{Fe}_{1}-\mathrm{P}_{1}-\mathrm{Fe}_{2}$ triangles forming the basket and the fragment $\mathrm{C}_{1}\left(\mathrm{NEt}_{2}\right) \mathrm{C}_{3}\left(\mathrm{PR}^{\prime}\right)$ providing the handle.

### 2.3. Structural comparison of complexes 2 and 4

The formation of 2 and 4 may be considered to be the result of analogous coupling reactions between the heterocumulenes D or E and the aminocarbene complex 1c. However, X-ray structure determinations show two different geometries for these compounds, depending on the presence or absence of a $\mathrm{C}_{1}-\mathrm{Fc}_{1}$ bond. For 2, the value of $2.30 \AA$ is indicative of such a $\mathrm{C}_{1}-\mathrm{Fe}_{1}$ bond, but the $\mathrm{C}_{1}-\mathrm{Fe}_{1}$ distance of $2.63 \AA$ observed for 4 shows that $\mathrm{C}_{1}$ and $\mathrm{Fe}_{1}$ atoms are not bonded. There is a consequent modification of orientation of the ligand with respect to the $\mathrm{Fe}_{1}-\mathrm{Fe}_{2}$ bond as indicated by the
angle between the $\left[\mathrm{N}_{1}-\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}\right.$ ] plane and the $\mathrm{Fe}_{1} \mathrm{Fe}_{2}$ vector: $50.2^{\circ}$ for 2 and $61.4^{\circ}$ for 4 (Fig. 4). Thus, this plane is less inclined towards $\mathrm{Fe}_{2}$ for $\mathbf{4}$ than for 2. The distortion of the ligand is reflected by torsional angles $\left[\mathrm{C}_{2}-\mathrm{C}_{1}-\mathrm{C}_{3}-\mathrm{X}\right]\left(\mathrm{X}=\mathrm{N}_{2}\right.$ or $\left.\mathrm{P}_{1}\right): 39^{\circ}$ for $\mathbf{2}$ and $20^{\circ}$ for 4. The distortion in $\mathbf{4}$ may be related to the involvement of the $N_{1}$ nitrogen lone pair. Due to the very small crystal size and the low quality of data for 4 , it is difficult to compare the $\mathrm{C}_{1}-\mathrm{N}_{1}$ bond lengths in 2 and 4; however, the sum of angles around $\mathrm{N}_{1}$ (4: 358.6 $6^{\circ}, 2$ : $334.6^{\circ}$ ) shows that $\mathrm{N}_{1}$ is planar in compound 4. This is consistent with a delocalization of the nitrogen lone pair and a $\mathrm{C}_{1}-\mathrm{N}_{1}$ multiple-bonding interaction. In organometallic clusters containing ynamine ligands [7], short $\mathrm{C}-\mathrm{N}$ distances and planar geometries of the amino-groups imply significant interactions between the lone pair of electrons of the nitrogen atom and the adjacent alkynyl carbon atom. This is supported by recent molecular orbital calculations [8]. In the complex $\left[\mathrm{Ru}_{2}(\mathrm{CO})_{6}\left[\mu-\mathrm{SC}\left(\mathrm{NEt}_{2}\right) \mathrm{CMe}\right\}\right]$, obtained by reaction of $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{10}\left(\mu_{3}-\mathrm{S}\right)\right]$ with $\mathrm{Me}-\mathrm{C}=\mathrm{C}-\mathrm{NEt}_{2}$, lone pair donation causes a weakening of the $\mathrm{Ru}-\mathrm{CNEt}_{2}$ metal-carbon bond, $\mathrm{Ru}-\mathrm{C}=2.419 \AA$ [9]. In 4, the
donation of the nitrogen lone pair is even stronger and breaks the $\mathrm{Fe}_{1}-\mathrm{C}_{1}$ bond, $\mathrm{C}_{1}-\mathrm{Fe}_{1}=2.63 \AA$.

Complexes 2 and 4 may be discussed using the Polyhedral Skeletal Electron Pair approach [10]. A skeletal electron count for 2 leads to 18 electrons: 4 electrons for the two $\mathrm{Fe}(\mathrm{CO})_{3}$ groups, 6 electrons for the two CR groups, 4 electrons for the NR group and 4 electrons for the CNR group. Considering the geometry around the $\mathrm{N}_{1}$ atom ( $\Sigma$ angles $=334.6^{\circ}$ ) which excludes the donation of the nitrogen lone pair, the $\mathrm{C}-\mathrm{NEt}_{2}$ group is taken as a $\mathrm{C}-\mathrm{R}$ group (3-electron donor). Thus, 2 has 9 skeletal electron pairs and appears to have an arachno structure based on the 8vertex polyhedron shown on Fig. 5a. For 4, the $\mathrm{N}_{1}$ nitrogen lone pair is involved and it is considered that two additional electrons are given to the cluster cage. Therefore, a 9 -vertex polyhedron is expected. Thus, complex 4 may be described as a hypho structure (Fig. 5 b).

A similar phenomenon was observed in a series of clusters obtained by addition of isocyanate to the aminocarbene complex 1 [2a,11]. In these clusters, the formal arachno $\rightarrow$ hypho transformation is related to


Fig. 3. View of molecule 4, $\left[\mathrm{Fe}_{2}(\mathrm{CO})_{6}\left[\mathrm{C}(\mathrm{Ph}) \mathrm{C}\left(\mathrm{NEt}_{2}\right) \mathrm{C}\left(\mathrm{PC}_{6} \mathrm{H}_{2}^{\mathrm{t}} \mathrm{Bu}_{3}\right) \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{2}^{\mathrm{t}} \mathrm{Bu}_{3}\right)\right]\right]$.

TABLE 2. Selected interatomic distances ( $\AA$ ) and bond angles (deg.) for compound 3, $\left[\mathrm{Fe}_{2}(\mathrm{CO})_{5}\left(\mathrm{CNC}_{6} \mathrm{H}_{4} \mathrm{Me}\right)\left\{\mathrm{C}\left(\mathrm{Ph}^{2}\right) \mathrm{C}\left(\mathrm{NEt}_{2}\right) \mathrm{N}\left(\mathrm{C}_{6} \mathrm{H}_{4}{ }^{-}\right.\right.\right.$ Me) $\}$ ]

| $\mathrm{Fe}(1)-\mathrm{Fe}(2)$ | $2.4471(9)$ | $\mathrm{Fe}(1)-\mathrm{C}(2)$ | $1.985(4)$ |
| :--- | :---: | :--- | ---: |
| $\mathrm{Fe}(1)-\mathrm{N}(3)$ | $2.011(3)$ | $\mathrm{Fe}(1)-\mathrm{C}(11)$ | $1.786(5)$ |
| $\mathrm{Fe}(1)-\mathrm{C}(13)$ | $1.773(5)$ | $\mathrm{Fe}(1)-\mathrm{C}(12)$ | $1.805(5)$ |
| $\mathrm{Fe}(2)-\mathrm{C}(1)$ | $2.260(4)$ | $\mathrm{N}(3)-\mathrm{C}(311)$ | $1.429(5)$ |
| $\mathrm{Fe}(2)-\mathrm{C}(2)$ | $2.078(4)$ | $\mathrm{Fe}(2)-\mathrm{C}(3)$ | $1.846(5)$ |
| $\mathrm{Fe}(2)-\mathrm{N}(3)$ | $1.970(3)$ | $\mathrm{Fe}(2)-\mathrm{C}(21)$ | $1.772(6)$ |
| $\mathrm{Fe}(2)-\mathrm{C}(22)$ | $1.796(5)$ | $\mathrm{C}(1)-\mathrm{C}(2)$ | $1.413(6)$ |
| $\mathrm{C}(1)-\mathrm{N}(3)$ | $1.393(5)$ | $\mathrm{C}(1)-\mathrm{N}(1)$ | $1.357(6)$ |
| $\mathrm{C}(2)-\mathrm{C}(4)$ | $1.483(6)$ | $\mathrm{N}(1)-\mathrm{C}(111)$ | $1.489(7)$ |
| $\mathrm{N}(1)-\mathrm{C}(121)$ | $1.482(6)$ | $\mathrm{N}(2)-\mathrm{C}(211)$ | $1.392(6)$ |
| $\mathrm{N}(2)-\mathrm{C}(3)$ | $1.150(6)$ | $\mathrm{O}-\mathrm{C}(\mathrm{av})$ | $1.14(6)$ |
| $\mathrm{N}(3)-\mathrm{Fe}(1)-\mathrm{C}(2)$ | $66.2(2)$ | $\mathrm{C}(11)-\mathrm{Fe}(1)-\mathrm{C}(2)$ | $99.3(2)$ |
| $\mathrm{C}(13)-\mathrm{Fe}(1)-\mathrm{C}(2)$ | $93.8(2)$ | $\mathrm{C}(11)-\mathrm{Fe}(1)-\mathrm{N}(3)$ | $104.4(2)$ |
| $\mathrm{C}(13)-\mathrm{Fe}(1)-\mathrm{N}(3)$ | $152.0(2)$ | $\mathrm{C}(13)-\mathrm{Fe}(1)-\mathrm{C}(11)$ | $97.9(2)$ |
| $\mathrm{C}(12)-\mathrm{Fe}(1)-\mathrm{C}(2)$ | $156.3(2)$ | $\mathrm{C}(12)-\mathrm{Fe}(1)-\mathrm{N}(3)$ | $97.2(2)$ |
| $\mathrm{C}(12)-\mathrm{Fe}(1)-\mathrm{C}(11)$ | $101.2(3)$ | $\mathrm{C}(12)-\mathrm{Fe}(1)-\mathrm{C}(13)$ | $94.9(2)$ |
| $\mathrm{C}(3)-\mathrm{Fe}(2)-\mathrm{C}(2)$ | $88.2(2)$ | $\mathrm{N}(3)-\mathrm{Fe}(2)-\mathrm{C}(2)$ | $65.2(2)$ |
| $\mathrm{N}(3)-\mathrm{Fe}(2)-\mathrm{C}(3)$ | $151.5(2)$ | $\mathrm{C}(21)-\mathrm{Fe}(2)-\mathrm{C}(2)$ | $113.2(2)$ |
| $\mathrm{C}(21)-\mathrm{Fe}(2)-\mathrm{C}(3)$ | $94.3(2)$ | $\mathrm{C}(21)-\mathrm{Fe}(2)-\mathrm{N}(3)$ | $105.1(2)$ |
| $\mathrm{C}(22)-\mathrm{Fe}(2)-\mathrm{C}(2)$ | $148.2(2)$ | $\mathrm{C}(22)-\mathrm{Fe}(2)-\mathrm{C}(3)$ | $94.1(2)$ |
| $\mathrm{C}(22)-\mathrm{Fe}(2)-\mathrm{N}(3)$ | $103.3(2)$ | $\mathrm{C}(22)-\mathrm{Fe}(2)-\mathrm{C}(21)$ | $98.2(3)$ |
| $\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{Fe}(2)$ | $175.2(4)$ | $\mathrm{N}(3)-\mathrm{C}(1)-\mathrm{C}(2)$ | $102.1(4)$ |
| $\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$ | $132.3(4)$ | $\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{N}(3)$ | $125.6(4)$ |
| $\mathrm{Fe}(2)-\mathrm{C}(2)-\mathrm{Fe}(1)$ | $74.0(1)$ | $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{Fe}(1)$ | $91.8(3)$ |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{Fe}(2)$ | $78.1(2)$ | $\mathrm{C}(4)-\mathrm{C}(2)-\mathrm{Fe}(1)$ | $135.1(3)$ |
| $\mathrm{C}(4)-\mathrm{C}(2)-\mathrm{Fe}(2)$ | $127.3(3)$ | $\mathrm{C}(4)-\mathrm{C}(2)-\mathrm{C}(1)$ | $128.4(4)$ |
| $\mathrm{C}(111)-\mathrm{N}(1)-\mathrm{C}(1)$ | $121.0(4)$ | $\mathrm{C}(121)-\mathrm{N}(1)-\mathrm{C}(1)$ | $119.8(4)$ |
| $\mathrm{C}(121)-\mathrm{N}(1)-\mathrm{C}(111)$ | $118.9(4)$ | $\mathrm{C}(3)-\mathrm{N}(2)-\mathrm{C}(211)$ | $171.0(5)$ |
| $\mathrm{Fe}(2)-\mathrm{N}(3)-\mathrm{Fe}(1)$ | $75.8(1)$ | $\mathrm{C}(1)-\mathrm{N}(3)-\mathrm{Fe}(1)$ | $91.3(2)$ |
| $\mathrm{C}(1)-\mathrm{N}(3)-\mathrm{Fe}(2)$ | $82.5(2)$ | $\mathrm{C}(311)-\mathrm{N}(3)-\mathrm{Fe}(1)$ | $123.7(3)$ |
| $\mathrm{C}(311)-\mathrm{N}(3)-\mathrm{Fe}(2)$ | $139.6(3)$ | $\mathrm{C}(311)-\mathrm{N}(3)-\mathrm{C}(1)$ | $126.8(4)$ |
| $\mathrm{O}-\mathrm{C}-\mathrm{Fe}(a v)$ | $178.3(5)$ |  |  |
|  |  |  |  |
|  |  |  |  |

the shortening of the $\mathrm{C}_{1}-\mathrm{N}_{1}$ bond and the lengthening of the $\mathrm{C}_{1}-\mathrm{Fe}_{1}$ distances (Table 4). Furthermore, an increase of the $\mathrm{C}_{3}-\mathrm{Fe}_{1}$ non-bonded distance is observed. The same variations of distance are found on comparing structural parameters of 2 and 4 (Table 4).

### 2.4. A possible mechanism

With these results, we propose a reaction mechanism to explain the formation of complexes 2-4 (Scheme 4). We have recently observed that nucleophilic attack of $\mathrm{PPh}_{3}$ resulted in the substitution of one CO ligand on the " $\mathrm{Fe}(\mathrm{CO})_{4}$ " fragment of 1 c [12]. Considering this reaction site, the first step of the reaction would be the fixation of the heterocumulene


Scheme 3.

TABLE 3. Selected interatomic distances ( $\AA$ ) and bond angles (deg.) for compound $4,\left[\mathrm{Fe}_{2}(\mathrm{CO})_{6}\left\{\mathrm{C}(\mathrm{Ph}) \mathrm{C}\left(\mathrm{NEt}_{2}\right) \mathrm{C}\left(\mathrm{PC}_{6} \mathrm{H}_{2}{ }^{\mathrm{L}} \mathrm{Bu}_{3}\right) \mathrm{P}\left(\mathrm{C}_{6}-\right.\right.\right.$ $\left.\mathrm{H}_{2}{ }^{\mathrm{t}} \mathrm{Bu}_{3}\right)$ )]

|  |  |  | $2.63(5)$ |
| :--- | :---: | :--- | ---: |
| $\mathrm{Fe}(1)-\mathrm{Fe}(2)$ | $2.49(1)$ | $\mathrm{Fe}(1)-\mathrm{C}(1)$ | $2.23(2)$ |
| $\mathrm{Fe}(1)-\mathrm{C}(3)$ | $3.06(5)$ | $\mathrm{Fe}(1)-\mathrm{P}(1)$ | $1.74(1)$ |
| $\mathrm{Fe}(1)-\mathrm{C}(11)$ | $1.75(2)$ | $\mathrm{Fe}(1)-\mathrm{C}(12)$ | $2.25(4)$ |
| $\mathrm{Fe}(1)-\mathrm{C}(13)$ | $1.75(5)$ | $\mathrm{Fe}(1)-\mathrm{C}(2)$ | $1.75(2)$ |
| $\mathrm{Fe}(2)-\mathrm{P}(1)$ | $2.20(2)$ | $\mathrm{Fe}(2)-\mathrm{C}(21)$ | $1.75(2)$ |
| $\mathrm{Fe}(2)-\mathrm{C}(22)$ | $1.75(2)$ | $\mathrm{Fe}(2)-\mathrm{C}(23)$ | $1.99(4)$ |
| $\mathrm{Fe}(2)-\mathrm{C}(3)$ | $3.26(5)$ | $\mathrm{Fe}(2)-\mathrm{C}(2)$ | $1.88(4)$ |
| $\mathrm{Fe}(2)-\mathrm{C}(1)$ | $2.98(5)$ | $\mathrm{P}(1)-\mathrm{C}(3)$ | $1.66(5)$ |
| $\mathrm{P}(1)-\mathrm{C}(111)$ | $1.80(5)$ | $\mathrm{P}(2)-\mathrm{C}(3)$ | $1.33(5)$ |
| $\mathrm{P}(2)-\mathrm{C}(211)$ | $1.87(5)$ | $\mathrm{N}(1)-\mathrm{C}(1)$ | $1.50(6)$ |
| $\mathrm{N}(1)-\mathrm{C}(121)$ | $1.48(5)$ | $\mathrm{N}(1)-\mathrm{C}(122)$ | $1.61(6)$ |
| $\mathrm{C}(1)-\mathrm{C}(2)$ | $1.38(6)$ | $\mathrm{C}(1)-\mathrm{C}(3)$ | $1.16(2)$ |
| $\mathrm{C}(2)-\mathrm{C}(4)$ | $1.46(6)$ | $\mathrm{O}-\mathrm{C}(\mathrm{av})$ | $92.2(20)$ |
| $\mathrm{C}(11)-\mathrm{Fe}(1)-\mathrm{P}(1)$ | $109.5(10)$ | $\mathrm{C}(12)-\mathrm{Fe}(1)-\mathrm{P}(1)$ | $152.6(26)$ |
| $\mathrm{C}(12)-\mathrm{Fe}(1)-\mathrm{C}(11)$ | $102.4(23)$ | $\mathrm{C}(13)-\mathrm{Fe}(1)-\mathrm{P}(1)$ | $84.8(19)$ |
| $\mathrm{C}(13)-\mathrm{Fe}(1)-\mathrm{C}(11)$ | $97.7(27)$ | $\mathrm{C}(13)-\mathrm{Fe}(1)-\mathrm{C}(12)$ | $815)$ |
| $\mathrm{C}(2)-\mathrm{Fe}(1)-\mathrm{P}(1)$ | $74.1(12)$ | $\mathrm{C}(2)-\mathrm{Fe}(1)-\mathrm{C}(11)$ | $115.5(23)$ |
| $\mathrm{C}(2)-\mathrm{Fe}(1)-\mathrm{C}(12)$ | $142.1(17)$ | $\mathrm{C}(2)-\mathrm{Fe}(1)-\mathrm{C}(13)$ | $91.7(21)$ |
| $\mathrm{C}(21)-\mathrm{Fe}(2)-\mathrm{P}(1)$ | $96.5(9)$ | $\mathrm{C}(22)-\mathrm{Fe}(2)-\mathrm{P}(1)$ | $107.5(11)$ |
| $\mathrm{C}(22)-\mathrm{Fe}(2)-\mathrm{C}(21)$ | $102.2(23)$ | $\mathrm{C}(23)-\mathrm{Fe}(2)-\mathrm{P}(1)$ | $149.9(21)$ |
| $\mathrm{C}(23)-\mathrm{Fe}(2)-\mathrm{C}(21)$ | $87.1(17)$ | $\mathrm{C}(23)-\mathrm{Fe}(2)-\mathrm{C}(22)$ | $100.9(21)$ |
| $\mathrm{C}(2)-\mathrm{Fe}(2)-\mathrm{P}(1)$ | $80.1(14)$ | $\mathrm{C}(2)-\mathrm{Fe}(2)-\mathrm{C}(21)$ | $164.9(21)$ |
| $\mathrm{C}(2)-\mathrm{Fe}(2)-\mathrm{C}(22)$ | $92.8(20)$ | $\mathrm{C}(2)-\mathrm{Fe}(2)-\mathrm{C}(23)$ | $88.7(23)$ |
| $\mathrm{Fe}(2)-\mathrm{P}(1)-\mathrm{Fe}(1)$ | $68.3(5)$ | $\mathrm{C}(3)-\mathrm{P}(1)-\mathrm{Fe}(1)$ | $95.9(18)$ |
| $\mathrm{C}(3)-\mathrm{P}(1)-\mathrm{Fe}(2)$ | $106.0(16)$ | $\mathrm{C}(111)-\mathrm{P}(1)-\mathrm{Fe}(1)$ | $126.4(20)$ |
| $\mathrm{C}(111)-\mathrm{P}(1)-\mathrm{Fe}(2)$ | $120.4(20)$ | $\mathrm{C}(111)-\mathrm{P}(1)-\mathrm{C}(3)$ | $125.1(26)$ |
| $\mathrm{C}(211)-\mathrm{P}(2)-\mathrm{C}(3)$ | $113.2(23)$ | $\mathrm{C}(121)-\mathrm{N}(1)-\mathrm{C}(1)$ | $123.3(50)$ |
| $\mathrm{C}(122)-\mathrm{N}(1)-\mathrm{C}(1)$ | $117.0(43)$ | $\mathrm{C}(122)-\mathrm{N}(1)-\mathrm{C}(121)$ | $118.3(42)$ |
| $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{N}(1)$ | $129.4(49)$ | $\mathrm{C}(3)-\mathrm{C}(1)-\mathrm{N}(1)$ | $110.5(47)$ |
| $\mathrm{C}(3)-\mathrm{C}(1)-\mathrm{C}(2)$ | $118.7(43)$ | $\mathrm{Fe}(2)-\mathrm{C}(2)-\mathrm{Fe}(1)$ | $71.4(12)$ |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{Fe}(1)$ | $89.2(30)$ | $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{Fe}(2)$ | $123.3(36)$ |
| $\mathrm{C}(4)-\mathrm{C}(2)-\mathrm{Fe}(1)$ | $119.1(34)$ | $\mathrm{C}(4)-\mathrm{C}(2)-\mathrm{Fe}(2)$ | $122.0(37)$ |
| $\mathrm{C}(4)-\mathrm{C}(2)-\mathrm{C}(1)$ | $114.1(41)$ | $\mathrm{P}(2)-\mathrm{C}(3)-\mathrm{P}(1)$ | $120.8(26)$ |
| $\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{P}(1)$ | $97.8(32)$ | $\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{P}(2)$ | $141.1(33)$ |
| $\mathrm{O}-\mathrm{C}-\mathrm{Fe}(\mathrm{av})$ | $173.2(50)$ |  |  |
|  |  |  |  |

at the iron atom with elimination of CO (intermediate $\mathbf{1}^{\prime}$ ). This reaction would be followed by a $(2+2)$ cycloaddition between the $\mathrm{X}=\mathrm{C}(\mathrm{X}=\mathrm{N}, \mathrm{P})$ and $\mathrm{Fe}=\mathrm{C}$ bonds with a $\mathrm{C}-\mathrm{C}$ coupling leading to the formation of a compound with structure type (a), observed for 2 (Scheme 4). A subsequent donation of the nitrogen lone pair would then rupture $\mathrm{C}_{1}-\mathrm{Fe}_{1}$ and form a compound with structure type (b), observed for 4 (Scheme 4). The fact that the phosphorus complex is unstable in a type (a) structure and stable in a type (b) structure is probably the consequence of the bulk of the phosphorus atom.

Complex 3 does not form by thermal rearrangement of complex 2 [13*], but probably arises from a competitive $(2+2)$ cycloaddition. The proposed intermediate $\mathbf{1}^{\prime}$ can undergo two $(2+2)$ cycloadditions as shown in Scheme 4. The compound resulting from $\mathrm{C}-\mathrm{N}$ bond

[^1]

Fig. 4.
formation, less stable than 2 , would rearrange and lose a second CO to give compound 3 . It is worth pointing out that the phosphorus compound analogous to 3 has not been isolated. The presence of a bulky substituent on the phosphorus atom probably prevents it from attacking the carbon atom bearing the $\mathrm{NEt}_{2}$ group.

In the field of carbodiimide and diphosphaallene organometallic chemistry, the complexes 2 and 4 are rare examples of addition to a metal-carbene bond. Further studies of the reactivity of these complexes are in progress.

## 3. Experimental section

All reactions were carried out under dinitrogen or argon. Hexane and dichloromethane were purified by standard procedures and stored over molecular sieves. Preparative column chromatography was performed on 70-230 mesh Merck silica gel. The complex 1c $\left[\mathrm{Fe}_{2}(\mathrm{CO})_{7}\left\{\mu-\mathrm{C}(\mathrm{Ph}) \mathrm{C}\left(\mathrm{NEt}_{2}\right)\right\}\right]$ was prepared as described in ref. 2. Di-p-tolylcarbodiimide was purchased from Aldrich Chemical Co. 1,3-Diphosphaallene was synthesized according to the previously described pro-


Arachno structure (a)


Hypho structure (b)

Fig. 5.
cedure [14]. IR spectra ( KBr pellet) were recorded on a Perkin-Elmer 597 spectrophotometer. Mass spectra were obtained on a Nermag R10-10 instrument. NMR spectra ( ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ ) were recorded on a Bruker AC 300 spectrometer.

### 3.1. Reaction of complex Ic with carbodiimide

Di-p-tolylcarbodiimide ( $60 \mathrm{mg}, 0.27 \mathrm{mmol}$ ) was added to a solution of complex $\mathbf{1 c}(120 \mathrm{mg}, 0.25 \mathrm{mmol})$ in dry hexane ( 20 ml ). The reaction mixture was heated under reflux for 4 h , then concentrated and chro-

TABLE 4. Comparison of structural parameters of selected complexes ${ }^{\text {a }}$

|  | Complex | $\mathrm{Fe}_{1}-\mathrm{C}_{1}$ | $\mathrm{C}_{1}-\mathrm{N}_{1}$ | $\mathrm{Fe}_{1}-\mathrm{Fe}_{2}$ |  |
| :--- | :--- | :--- | :--- | :--- | :--- |

[^2]

Scheme 4.
matographed on a silica column. Complexes 2 and 3 were separated and purified using dichloromethane/ hexane ( $10 / 90$ ) as eluent.

2: red crystals ( $59 \mathrm{mg}, 35 \%$ ) $\mathrm{mp}=125^{\circ} \mathrm{C}$, IR: $\nu(\mathrm{C}=\mathrm{O})$ 2070s, 2020s, 2000s, 1970s, 1950s, $\nu$ (C=N) $1640 \mathrm{~m} \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( $300.13 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta: 0.35$ ( $\mathrm{t}, 6 \mathrm{H}, \mathrm{CH}_{3}-$ $\mathrm{CH}_{2}$ ), 1.92 (s, $3 \mathrm{H}, p-\mathrm{CH}_{3}$ ), 2.02 ( $\mathrm{s}, 3 \mathrm{H}, p-\mathrm{CH}_{3}$ ), 2.59 (q, $\left.4 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{CH}_{2}\right)$; MS ( $m / e$ ): $675\left(\mathrm{M}^{+}\right), 647\left(\mathrm{M}^{+}-\right.$ CO ), 619 ( $\mathrm{M}^{+}-2 \mathrm{CO}$ ), $591\left(\mathrm{M}^{+}-3 \mathrm{CO}\right), 563\left(\mathrm{M}^{+}-\right.$ $4 \mathrm{CO}), 535\left(\mathrm{M}^{+}-5 \mathrm{CO}\right), 507\left(\mathrm{M}^{+}-6 \mathrm{CO}\right)$.

3: red crystals ( $88 \mathrm{mg}, 55 \%$ ), $\mathrm{mp}=101^{\circ} \mathrm{C}$, IR: $\nu(\mathrm{C}=\mathrm{O})$ 2030s, 1970s, 1950s, 1935s, 1925s, $\nu(\mathrm{C} \equiv \mathrm{N}) 2130 \mathrm{~s} \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( $300.13 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta: 0.61\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3}-\right.$ $\mathrm{CH}_{2}$ ), 1.81 (s, $3 \mathrm{H}, p-\mathrm{CH}_{3}$ ), 1.96 (s, $3 \mathrm{H}, p-\mathrm{CH}_{3}$ ), 2.42 ( $\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{CH}_{2}$ ), $2.55\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{CH}_{2}\right.$ ); MS $(m / e): 647\left(\mathrm{M}^{+}\right), 619\left(\mathrm{M}^{+}-\mathrm{CO}\right), 591\left(\mathrm{M}^{+}-2 \mathrm{CO}\right)$, $563\left(\mathrm{M}^{+}-3 \mathrm{CO}\right), 535\left(\mathrm{M}^{+}-4 \mathrm{CO}\right), 507\left(\mathrm{M}^{+}-5 \mathrm{CO}\right)$.

### 3.2. Reaction of complex Ic with 1,3-diphosphaallene

Diphosphaallene ( $130 \mathrm{mg}, 0.230 \mathrm{mmol}$ ) was added to a solution of complex $1 \mathbf{c}(110 \mathrm{mg}, 0.228 \mathrm{mmol})$ in dry hexane ( 20 ml ). The reaction mixture was heated under reflux for 12 h , during which time it slowly changed from red to dark brown. After removing the solvent
under vacuum, the residue was dissolved in hexane and was chromatographed on a silica column. A red band was eluted with a dichloromethane/hexane ( $20 / 80$ ) solution and affored dark red crystals of 4 ( 100 mg , $43 \%$ ). IR $\nu(\mathrm{C} \equiv \mathrm{O}): 2050 \mathrm{~s}, 2010 \mathrm{~s}, 1980 \mathrm{~s}, 1970 \mathrm{~m}, 1960 \mathrm{~s}$, $1940 \mathrm{~m} \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $300.13 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta: 0.53$ ( $\mathrm{m}, 6 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{CH}_{2}$ ), $1.28\left(\mathrm{~s}, 9 \mathrm{H}, p-{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.37(\mathrm{~s}, 9 \mathrm{H}$, $\left.p-{ }^{-} \mathrm{Bu}\right), 1.71\left(\mathrm{~s}, 18 \mathrm{H}, o{ }^{-}{ }^{-} \mathrm{Bu}\right), 2.11\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{o}^{-} \mathrm{Bu}\right), 2.40$ ( $\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{CH}_{2}$ ); ${ }^{31} \mathrm{P}$ NMR ( $121.5 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta$ : $139.9\left(\mathrm{~d},{ }^{2} J_{\mathrm{pp}}=83 \mathrm{~Hz}\right), 250.7\left(\mathrm{~d},{ }^{2} J_{\mathrm{pp}}=83 \mathrm{~Hz}\right) ; \mathrm{MS}$ ( $m / e$ ): $961\left(\mathrm{M}^{+}-2 \mathrm{CO}\right), 933\left(\mathrm{M}^{+}-3 \mathrm{CO}\right), 905\left(\mathrm{M}^{+}-\right.$ 4 CO ), $877\left(\mathrm{M}^{+}-5 \mathrm{CO}\right), 849$ base peak ( $\mathrm{M}^{+}-6 \mathrm{CO}$ ).

### 3.3. Crystal data for complexes 2, 3 and 4

For each complex a selected crystal was set up on an automatic diffractometer (Nonius-CAD4 and Philips PW1100). Unit cell dimensions with estimated standard deviations were obtained from least-squares refinements of the setting angles of 25 centred reflections well dispersed in reciprocal space. Two standard reflections were monitored periodically; they showed no change during data collection carried out at room temperature. Crystallographic data and other pertinent information are summarized in Table 5. Corrections were made for Lorentz and polarization effects. Empirical absorption corrections (Difabs) [15] were applied.

Computations were performed by using crystals [16] adapted for MicroVax II. Atomic form factors for neutral $\mathrm{Fe}, \mathrm{P}, \mathrm{O}, \mathrm{N}, \mathrm{C}$ and H atoms were taken from ref. 17. Anomalous dispersion was provided by crystals. The three structures were solved by direct methods using the shelx86 [18] program. Least-squares refinements with approximation to the normal matrix were carried out by minimizing the function $\Sigma w\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2}$, where $F_{\mathrm{o}}$ and $F_{\mathrm{c}}$ are the observed and calculated structure factors. The weighting scheme used in the last refinement cycle was $w=w^{\prime}[1-$ $\left.\left(\Delta \mathrm{F} / 6 \sigma\left(\mathrm{~F}_{0}\right)\right)^{2}\right]^{2}$ where $w^{\prime}=1 / \sum_{1}{ }^{3} \mathrm{~A}_{\mathrm{r}} \mathrm{T}_{\mathrm{r}}(\mathrm{x})$ with three coefficients $A_{r}$ for the Chebyshev polynomial $A_{r} T_{r}(x)$ where x was $F_{\mathrm{c}} / F_{\mathrm{c}}(\max )$ [19]. Models reached convergence with $R=\Sigma\left(\left\|F_{0}|-| F_{\mathrm{c}}\right\|\right) / \Sigma\left|F_{\mathrm{o}}\right|$ and $R_{w}=$ $\left[\Sigma w\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2} / \sum w\left(F_{\mathrm{o}}\right)^{2}\right]^{1 / 2}$ having values listed in Table 5. For analysis of compounds 2 and 3, the positions of all hydrogen atoms except those attached to disordered carbon atoms, were calculated assuming idealized geometries. Their atomic coordinates were recalculated after each cycle. They were given isotropic thermal parameters $20 \%$ higher than those of the carbon to which they were attached. Criteria for a satisfactory complete analysis were the ratios of rms shift to standard deviation being less than 0.1 and no significant features in final difference maps. Atomic coordinates are given in Tables 6-8. Tables 1-3 contain interatomic distances and bond angles.

TABLE 5. Crystallographic data

| Crystal parameters |  |  |  |
| :---: | :---: | :---: | :---: |
| Compound fw | $\mathrm{C}_{33} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Fe}_{2}$ | $\mathrm{C}_{33} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Fe}_{2}, 1 / 2 \mathrm{C}_{6} \mathrm{H}_{12}$ | $\mathrm{C}_{55} \mathrm{H}_{68} \mathrm{NO}_{6} \mathrm{P}_{2} \mathrm{Fe}_{2}$ |
| Crystal system | monoclinic | monoclinic | monoclinic |
| Space group | $P 2_{1} / a$ | C2/c | $P 2_{1} / a$ |
| a, $\AA$ | 14.761(6) | 15.002(8) | 19.037(6) |
| $b, \AA$ | 20.094(7) | 15.674(2) | 13.828(3) |
| $c, \AA$ | 11.380(3) | 30.255(6) | 21.253(4) |
| $\beta$, deg | 106.95(2) | 93.85(2) | 100.47(2) |
| $V, \AA^{3}$ | 3229(16) | 7098(28) | 5501(21) |
| $Z$ | 4 | 8 | 4 |
| $\rho$ (calcd), g. $\mathrm{cm}^{-3}$ | 1.34 | 1.29 | 1.22 |
| $\mu(\mathrm{MoK} \alpha) \mathrm{cm}^{-1}$ | 9.4 | 8.57 | 6.28 |
| Data collection |  |  |  |
| diffractometer monochromator | Philips PW1100 graphite | Philips PW 1100 graphite | CAD 4F |
| radiation | Mo $\mathrm{K} \alpha$ (0.71070) | $\text { Mo K } \alpha(0.71070)$ | $\operatorname{MoK} \alpha(0.71070)$ |
| scan type | $\omega / 2 \theta$ | $\omega / 2 \theta$ | $\omega / 2 \theta$ |
| scan range $\theta$, deg | $0.9+0.345 \operatorname{tg} \theta$ | $0.9+0.345 \operatorname{tg} \theta$ | $0.8+0.345 \operatorname{tg} \theta$ |
| $2 \theta$ range, deg | $4<2 \theta<40$ | $4<2 \theta<50$ | $3<2 \theta<36$ |
| reflctn collected | 2931 | 4417 | 4165 |
| reflctn merged ( $\mathrm{R}_{\mathrm{m}}$ ) | 2691 (0.038) | 4317 (0.031) | 3925 (0.068) |
| reflctn used ( $l>3 \sigma(l)$ ) | 1491 | 3293 | 917 |
| Refinement |  |  |  |
| $R$ | 0.067 | 0.045 | 0.100 |
| $R_{w}{ }^{*}$ | 0.075 | 0.055 | 0.115 |
| abs. corr. ** | Difabs | Difabs | Difabs |
| min./max. abs | 0.927/1.068 | 0.964/1.028 | 0.804/1.029 |
| second. extinct. param. | no | no | no |
| weighting scheme | Chebyshev | Chebyshev | Chebyshev |
| Coeff.Ar | 1.27; 0.514; 09.39 | 1.11; 0.696; 0.632 | 4.68; -0.95; 3.19 |
| I.s. parameters | 296 | 396 | 222 |

Crystals of compound 2 are monoclinic. The space group $P 2_{1} / a$ was identified on the basis of systematic absences observed during data collection. Of the two ethyl of the amino group $\mathrm{NEt}_{2}$, one appeared to be disordered, since the thermal parameters of its carbon atoms had large values and several peaks were found in the difference Fourier map in the immediate vicinity of these atoms. Several attempts at modelling this disorder resulted in the one shown below, where the disordered group corresponds to $\mathrm{C}_{111}-\mathrm{C}_{112}$ and $\mathrm{C}_{113}{ }^{-}$ $\mathrm{C}_{114}$.


In view of the rather low radio of data to parameters (5), the three phenyl groups were refined isotropically and they were constrained to chemically reasonabie vaiues $\left(\mathrm{C}-\mathrm{C}=1.40 \AA, \quad \mathrm{C}-\mathrm{C}-\mathrm{C}=120^{\circ}\right.$ ). Anisotropic temperature factors were introduced for all other non-hydrogen atoms.

Compound $\mathbf{3}$ crystallized in a C centred monoclinic unit cell. The centrosymmetric space group $C 2 / c$ was assumed and confirmed by successful refinement of the structure. Each methyl of the two amino groups was disordered and distributed on two sites with occupation factors of 0.7 and 0.3 respectively. In the final stage of the analysis, a molecule of hexane was located around a centre of symmetry. It was included in calculations and refined using constrained geometry to fit chemically reasonable values ( $\mathrm{C}-\mathrm{C}=1.54 \AA, \mathrm{C}-\mathrm{C}-\mathrm{C}$ $=109^{\circ}$ ). Anisotropic refinements were used for all non-hydrogen atoms but the disordered C atoms of the methyl groups and the solvent molecule.

Compound 4 was difficult to crystallize. Only tiny crystals were obtained. The space group $P 2_{1} / a$ was

TABLE 6. Fractional atomic coordinates with e.s.d.s in parentheses, and equivalent isotropic thermal parameters $U_{e q}$ for compound 2
$U_{\text {eq }}=\left[U_{11} \cdot U_{22} \cdot U_{33}\right]^{1 / 3}$

| Atom | $x$ | $y$ | $z$ | $U_{\text {eq }}$ | $U_{\text {iso }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Fe}(1)$ | 0.1596(1) | 0.35452(8) | 0.8807(2) | 0.0635 |  |
| $\mathrm{Fe}(2)$ | 0.3190(1) | 0.36224(8) | 0.8554(1) | 0.0494 |  |
| C(1) | 0.2563(6) | $0.3954(5)$ | 1.063(1) | 0.0461 |  |
| C(2) | 0.2934(7) | 0.3393(5) | 1.0143(9) | 0.0495 |  |
| C(4) | 0.3447(5) | 0.2843(4) | 1.0882(8) |  | 0.041(3) |
| C(5) | 0.4286(7) | 0.2968(4) | 1.179(1) |  | 0.074(4) |
| C(6) | 0.4817(7) | $0.2456(5)$ | 1.2501(9) |  | 0.078(4) |
| C(7) | 0.4507(7) | 0.1801(4) | 1.2293(9) |  | 0.065(3) |
| C(8) | 0.3687(7) | $0.1666(4)$ | 1.1353(9) |  | 0.066(3) |
| C(9) | $0.3144(6)$ | 0.2181(4) | 1.0670(9) |  | 0.066(3) |
| C(3) | 0.2586(7) | 0.4574(5) | 0.9937(9) | 0.0388 |  |
| N(1) | $0.2335(7)$ | $0.4000(4)$ | 1.1725(9) | 0.0506 |  |
| C(111) | $0.197(1)$ | 0.330(1) | 1.205(2) |  | 0.064(6) |
| C(112) | $0.255(2)$ | 0.312(2) | 1.334(3) |  | 0.090(8) |
| C(113) | $0.283(2)$ | 0.359(1) | 1.294(2) |  | $0.060(7)$ |
| C(114) | $0.220(2)$ | 0.300(2) | 1.292(4) |  | 0.09(1) |
| C(121) | $0.1634(8)$ | 0.4461(5) | 1.186(1) | 0.0491 |  |
| C(122) | 0.1741(9) | $0.4715(6)$ | 1.313(1) | 0.0750 |  |
| N(2) | 0.2326(5) | 0.4364(4) | 0.8663 (7) | 0.0478 |  |
| C(211) | 0.2134(5) | 0.4882(4) | 0.7756(8) |  | 0.049(3) |
| C(212) | 0.2848(6) | $0.5320(5)$ | 0.7693(9) |  | 0.067(3) |
| C(213) | 0.2674(6) | 0.5809(5) | 0.678(1) |  | 0.077(4) |
| C(214) | 0.1772(6) | 0.5871(4) | 0.5949(8) |  | 0.062(3) |
| C(215) | $0.1057(6)$ | $0.5447(5)$ | $0.6028(9)$ |  | 0.064(3) |
| C(216) | 0.1231(6) | 0.4957(4) | $0.6936(8)$ |  | 0.055(3) |
| C(217) | 0.1571 (8) | $0.6410(6)$ | 0.495(1) |  | 0.097(4) |
| N(3) | 0.2783(5) | 0.5173(4) | 1.0214(7) | 0.0468 |  |
| C(311) | $0.3209(6)$ | 0.5410(4) | $1.1438(8)$ |  | 0.050(3) |
| C(312) | $0.2843(6)$ | 0.5983(5) | 1.1832(8) |  | 0.068(3) |
| C(313) | 0.3305(7) | 0.6253(5) | $1.2981(8)$ |  | 0.071(3) |
| C(314) | $0.4143(6)$ | $0.5979(5)$ | $1.3706(8)$ |  | 0.075(4) |
| C(315) | $0.4511(7)$ | 0.5413(5) | 1.3313(9) |  | 0.082(4) |
| C(316) | $0.4035(6)$ | $0.5120(4)$ | 1.2191(8) |  | 0.055(3) |
| C(317) | 0.4685(9) | $0.6320(7)$ | 1.491(1) |  | 0.111(5) |
| C(11) | 0.1312(9) | $0.3309(7)$ | 0.719(1) | 0.0833 |  |
| $\mathrm{O}(11)$ | 0.1041(7) | 0.3147(5) | 0.621(1) | 0.1122 |  |
| C(12) | 0.0542(8) | 0.3948(5) | 0.892(1) | 0.0649 |  |
| O(12) | -0.0120(6) | 0.4212(5) | 0.8960(9) | 0.0918 |  |
| C(13) | 0.1175(9) | 0.2771(7) | 0.918(2) | 0.0928 |  |
| O(13) | 0.0841(7) | 0.2287(5) | 0.941(1) | 0.1200 |  |
| C(21) | $0.4336(8)$ | 0.3949(5) | $0.9342(9)$ | 0.0428 |  |
| O(21) | $0.5045(5)$ | 0.4165(4) | 0.9874(7) | 0.0719 |  |
| C(22) | $0.3150(9)$ | 0.3817(7) | 0.699(1) | 0.0658 |  |
| $\mathrm{O}(22)$ | 0.3168(8) | 0.3931(6) | 0.6028(8) | 0.0962 |  |
| C(23) | $0.3570(8)$ | 0.2807(6) | 0.834(1) | 0.0695 |  |
| O(23) | 0.3795(6) | 0.2285(4) | $0.8113(8)$ | 0.0898 |  |

identified on the basis of the systematic absences observed during the data collection which was of low quality. No reflections were measured above $\theta=18^{\circ}$. Thus, only isotropic refinements were carried out.

## 4. Supplementary material available

Tables of anisotropic temperature factors, hydrogen coordinates, and bond lengths and angles may be ob-

TABLE 7. Fractional atomic coordinates with e.s.d.s in parentheses, and equivalent isotropic thermal parameters $U_{e q}$ for compound 3
$U_{\text {eq }}=\left[U_{11} \cdot U_{22} \cdot U_{33}\right]^{1 / 3}$

| Atom | $\boldsymbol{x}$ | $y$ | $z$ | $U_{\text {eq }}$ | $U_{\text {iso }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Fe (1) | $0.19730(4)$ | 0.60304(4) | 0.34899(2) | 0.0555 |  |
| $\mathrm{Fe}(2)$ | 0.15508(4) | $0.62540(4)$ | 0.42486(2) | 0.0570 |  |
| C(1) | 0.0587(3) | 0.5502(3) | 0.3794(1) | 0.0539 |  |
| C(2) | $0.1451(3)$ | $0.5150(2)$ | 0.3868(1) | 0.0515 |  |
| C(4) | 0.1702(3) | 0.4272(3) | 0.4009(2) | 0.0577 |  |
| C(5) | 0.1471(3) | $0.3949(3)$ | $0.4411(2)$ | 0.0665 |  |
| C(6) | 0.1715(4) | $0.3146(3)$ | 0.4549 (2) | 0.0772 |  |
| C(7) | 0.2198(4) | 0.2636(3) | 0.4289(2) | 0.0832 |  |
| C(8) | 0.2444(4) | 0.2938(3) | $0.3896(2)$ | 0.0814 |  |
| C(9) | 0.2201(4) | $0.3756(3)$ | 0.3753(2) | 0.0727 |  |
| N(2) | 0.3018(3) | $0.5370 \times 3)$ | 0.4790 (1) | 0.0717 |  |
| C(211) | 0.3614(3) | 0.4805(3) | 0.5008(2) | 0.0677 |  |
| C(212) | 0.3804(4) | $0.4906(4)$ | 0.5459(2) | 0.0780 |  |
| C(213) | 0.4373(4) | 0.4328(4) | $0.5677(2)$ | 0.0822 |  |
| C(214) | 0.4755(3) | $0.3664(3)$ | 0.5455(2) | 0.0731 |  |
| C(215) | 0.4568(4) | $0.3599(3)$ | 0.5002(2) | 0.0879 |  |
| C(216) | 0.3995(4) | 0.4169(3) | 0.4776(2) | 0.0805 |  |
| C(217) | 0.5374(5) | 0.3021(4) | $0.5690(3)$ | 0.1042 |  |
| C(3) | 0.2472(3) | 0.5742(3) | $0.4587(2)$ | 0.0653 |  |
| N(3) | 0.0774(2) | 0.6351(2) | $0.3700(1)$ | 0.0542 |  |
| C(311) | 0.0184(3) | 0.6951(3) | $0.3477(1)$ | 0.0552 |  |
| C(312) | -0.0331(3) | $0.6722(3)$ | 0.3102(2) | 0.0681 |  |
| C(313) | -0.0830(4) | $0.7335(3)$ | 0.2861(2) | 0.0716 |  |
| C(314) | -0.0827(3) | 0.8175(3) | 0.2989(2) | 0.0662 |  |
| C(315) | -0.0329(4) | 0.8389 (3) | 0.3369(2) | 0.0763 |  |
| C(316) | 0.0173(3) | $0.7786(3)$ | 0.3618(2) | 0.0674 |  |
| C(317) | -0.1337(5) | 0.8834(4) | 0.2708(2) | 0.0905 |  |
| C(11) | 0.1722(3) | 0.5557(3) | 0.2959(2) | 0.0676 |  |
| O(11) | 0.1581(3) | $0.5250(3)$ | $0.2622(1)$ | 0.1047 |  |
| C(13) | 0.3078(3) | 0.5636(3) | 0.3584(2) | 0.0670 |  |
| O(13) | $0.3779(2)$ | $0.5369(3)$ | 0.3651(2) | 0.0878 |  |
| C(12) | 0.2312(4) | 0.7088(3) | $0.3336(2)$ | 0.0802 |  |
| C(21) | 0.0814(4) | 0.6265(3) | 0.4682(2) | 0.0795 |  |
| $\mathrm{O}(21)$ | 0.0349(4) | 0.6278(4) | 0.4971(2) | 0.1169 |  |
| O(12) | 0.2544(3) | 0.7752(3) | $0.3242(2)$ | 0.1193 |  |
| C(22) | 0.1997(4) | 0.7311(3) | 0.4324(2) | 0.0755 |  |
| $\mathrm{O}(22)$ | $0.2300(3)$ | $0.7974(3)$ | 0.4381(2) | 0.1085 |  |
| N(1) | -0.0241(3) | 0.5157(2) | 0.3804(1) | 0.0685 |  |
| C(111) | -0.1008(4) | 0.5676(4) | 0.3939(2) | 0.0817 |  |
| C(121) | 0.0369(4) | 0.4231(3) | 0.3727(2) | 0.0843 |  |
| C(112) | -0.1400(7) | 0.5304(6) | 0.4328(3) |  | $0.116(3)$ |
| C(113) | -0.181(2) | 0.560(2) | 0.3665(9) |  | 0.083(7) |
| C(122) | -0.022(1) | 0.3981(9) | 0.3243(5) |  | 0.123(4) |
| C(123) | -0.082(2) | 0.408(2) | 0.3271(9) |  | $0.130(7)$ |
| C(200) | 0.0000 | 0.179(2) | 0.2500 |  | 0.33(1) |
| C(201) | 0.134(1) | 0.138(1) | $0.2980(8)$ |  | 0.38(1) |
| C(202) | 0.1027(6) | 0.176(2) | 0.2532(6) |  | $0.30(1)$ |
| C(203) | $0.036(1)$ | $0.115(2)$ | 0.285(1) |  | $0.30(2)$ |
| C(204) | 0.178(2) | 0.060(2) | 0.322(1) |  | 0.34(2) |

tained from the Cambridge Crystallographic Data Centre.

## Acknowledgments

We thank Dr. R. Thouvenot for NMR spectra, and Dr. R. Speel and Dr. S. Halut-Desporte for assistance in the preparation of this manuscript.

TABLE 8. Fractional atomic coordinates with e.s.d.s in parentheses, and isotropic thermal parameters $U_{\text {iso }}$ for compound 4

| Atom | $x$ | $y$ | $z$ | $U_{\text {iso }}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Fe}(1)$ | -0.7938(4) | -0.1906(7) | -0.7637(4) | $0.059(2)$ |
| $\mathrm{Fe}(2)$ | -0.6834(4) | -0.2400(6) | -0.6892(4) | 0.053(2) |
| $\mathrm{P}(1)$ | -0.7313(7) | -0.095(1) | -0.6893(6) | 0.032(4) |
| $\mathrm{P}(2)$ | -0.6638(7) | $0.092(1)$ | -0.7285(6) | $0.035(4)$ |
| C(11) | -0.851(2) | -0.120(2) | -0.819(2) | 0.10(2) |
| $\mathrm{O}(11)$ | -0.890(2) | -0.071(3) | -0.853(2) | 0.15(2) |
| C(12) | -0.850(2) | -0.228(3) | -0.712(2) | 0.09 (2) |
| $\mathrm{O}(12)$ | -0.886(2) | -0.255(3) | -0.679(2) | 0.12(1) |
| C(13) | -0.814(3) | -0.303(4) | -0.800(3) | 0.14(3) |
| O(13) | -0.835(3) | -0.373(4) | -0.827(2) | 0.14(2) |
| C(21) | -0.710(3) | -0.281(2) | -0.619(2) | $0.06(2)$ |
| O(21) | -0.733(2) | -0.307(2) | -0.574(1) | 0.06(1) |
| C(22) | -0.591(1) | -0.227(2) | -0.665(2) | $0.09(2)$ |
| O (22) | -0.532(1) | -0.212(3) | -0.642(2) | $0.11(1)$ |
| C(23) | -0.689(2) | -0.360(2) | -0.715(3) | 0.10(2) |
| $\mathrm{O}(23)$ | -0.681(3) | -0.444(2) | -0.721(3) | 0.19 (2) |
| $\mathrm{N}(1)$ | -0.671(2) | -0.065(3) | -0.852(2) | 0.05(1) |
| C(1) | -0.864(3) | -0.104(4) | -0.798(2) | 0.05(2) |
| C(2) | $-0.680(2)$ | -0.199(4) | -0.778(2) | 0.03(1) |
| C(3) | -0.689(3) | -0.021(4) | -0.746(2) | 0.05(1) |
| C(4) | -0.662(3) | -0.267(4) | -0.826(3) | $0.065(2)$ |
| C(5) | -0.710(3) | -0.284(4) | -0.885(3) | 0.065(2) |
| C(6) | -0.689(3) | -0.351(4) | -0.932(3) | 0.065(2) |
| C(7) | -0.632(3) | -0.400(4) | -0.919(3) | 0.065(2) |
| C(8) | -0.586(3) | -0.389(4) | -0.861(3) | $0.065(2)$ |
| C(9) | $-0.595(3)$ | $0.313(5)$ | 0.815(2) | 0.065(2) |
| C(111) | -0.760(3) | -0.049(4) | -0.619(3) | 0.065(2) |
| C(112) | -0.725(3) | -0.068(4) | -0.555(3) | 0.065(2) |
| C(113) | -0.759(3) | -0.095(4) | -0.507(3) | 0.065(2) |
| C(114) | -0.833(3) | -0.108(4) | -0.516(3) | 0.065(2) |
| C(115) | -0.872(3) | -0.062(4) | -0.568(3) | 0.065(2) |
| C(116) | -0.838(3) | -0.034(5) | -0.623(3) | 0.065(2) |
| C(121) | -0.621(3) | -0.109(4) | -0.890(3) | 0.065(2) |
| C(122) | -0.721(3) | $0.012(4)$ | -0.883(3) | $0.065(2)$ |
| C(123) | -0.586(3) | -0.016(4) | -0.928(3) | $0.065(2)$ |
| C(124) | -0.772(3) | -0.029(4) | -0.947(3) | 0.065(2) |
| C(131) | -0.640(3) | -0.058(4) | -0.531(3) | 0.065(2) |
| C(132) | -0.603(3) | -0.148(4) | -0.506(2) | 0.065(2) |
| C(133) | -0.601(3) | -0.007(4) | -0.584(3) | 0.065(2) |
| C(134) | -0.635(3) | 0.026(4) | -0.475(3) | 0.065(2) |
| C(141) | -0.873(3) | -0.132(4) | -0.462(3) | 0.065(2) |
| C(142) | -0.939(3) | -0.189(4) | -0.490(2) | 0.065(2) |
| C(143) | $-0.824(3)$ | $-0.210(4)$ | -0.424(2) | 0.065(2) |
| C(144) | -0.886(3) | -0.045(4) | -0.423(3) | 0.065(2) |
| C(151) | -0.890(3) | 0.038(5) | -0.672(3) | 0.065(2) |
| C(152) | -0.954(3) | -0.018(4) | -0.707(3) | $0.065(2)$ |
| C(153) | -0.907(3) | $0.125(4)$ | -0.631(3) | $0.065(2)$ |
| C(154) | -0.846(3) | 0.081(4) | -0.720(3) | 0.065(2) |
| C(211) | -0.620(3) | 0.151(4) | -0.791(3) | 0.065(2) |
| C(212) | -0.541(3) | 0.134(4) | -0.787(3) | 0.065(2) |
| C(213) | -0.512(3) | $0.170(4)$ | -0.841(3) | 0.065(2) |
| C(214) | -0.548(3) | 0.229(4) | -0.887(2) | 0.065(2) |
| C(215) | -0.618(3) | 0.254(4) | -0.880(2) | 0.065(2) |
| C(216) | -0.653(3) | 0.222(4) | $-0.830(3)$ | 0.065(2) |
| C(231) | -0.492(3) | 0.075(5) | $-0.736(3)$ | 0.065(2) |
| C(232) | -0.500(3) | 0.121(4) | -0.668(3) | 0.065(2) |
| C(233) | -0.411(3) | $0.090(4)$ | -0.746(3) | 0.065(2) |
| C(234) | -0.508(3) | $-0.035(5)$ | -0.744(2) | 0.065(2) |
| C(241) | -0.519(3) | 0.258(5) | -0.946(2) | 0.065(2) |
| $\mathrm{C}(242)$ | -0.574(3) | 0.269(4) | -1.001(2) | 0.065(2) |

TABLE 8 (Continued)

| Atom | $x$ | $y$ | $z$ | $U_{\text {iso }}$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{C}(243)$ | $-0.455(3)$ | $0.203(4)$ | $-0.958(2)$ | $0.065(2)$ |
| $\mathrm{C}(244)$ | $-0.499(3)$ | $0.365(4)$ | $-0.930(2)$ | $0.065(2)$ |
| $\mathrm{C}(251)$ | $-0.726(3)$ | $0.282(4)$ | $-0.823(2)$ | $0.065(2)$ |
| $\mathrm{C}(252)$ | $-0.793(3)$ | $0.215(4)$ | $-0.830(2)$ | $0.065(2)$ |
| $\mathrm{C}(253)$ | $-0.709(3)$ | $0.315(4)$ | $-0.748(2)$ | $0.065(2)$ |
| $\mathrm{C}(254)$ | $-0.741(3)$ | $0.366(4)$ | $-0.864(3)$ | $0.065(2)$ |

## References and notes

1 (a) E. Cabrera, O. Kristianson, J-C. Daran and Y. Jeannin, J. Organomet. Chem., 310 (1986) 367; (b) V. Crocq, J-C. Daran, Y. Jeannin, B. Eber and G. Huttner, Organometallics, 10, (1991) 448; (c) V. Crocq, unpublished results.
2 (a) V. Crocq, J-C. Daran and Y. Jeannin, J. Organomet. Chem., 373 (1989) 85; (b) B. Heim, personal communication.
3 J-C. Daran, B. Heim and Y. Jeannin, C.R. Acad. Sci. Paris, 312 Serie II (1991) 1117.
4 (a) H-H. Karsch, H-U. Reisacher and G. Müller, Angew. Chem. Int. Ed. Engl., 23 (1984) 618; (b) R. Appel, P. Fölling, B. Josten, M. Siray, V. Winkhaus and F. Knoch, Angew. Chem., Int. Ed. Engl., 23 (1984) 619; (c) M. Yoshifuji, K. Toyota and N. Inamoto, J. Chem. Soc., Chem. Commun, (1984) 689.

5 J.F. Nixon, Chem. Rev., 88 (1988) 1327.
6 C.A. Akpan, P.B. Hitchcock, J.F. Nixon, M. Yoshifuji, T. Niitsu and N. Inamoto, J. Organomet. Chem., 338 (1988) C35.
7 R.D. Adams, J-C. Daran and Y. Jeannin, J. Cluster Science, 3 (1992) 1.

8 (a) Z. Nomikou, J-F. Halet, R. Hoffmann, J.T. Tanner and R.D. Adams, Organometallics, 9 (1990) 588; (b) R.D. Adams, G. Chen, L. Chen, J. Yin and J-F. Halet, J. Cluster Sci., 2 (1991) 83.

9 R.D. Adams, G. Chen, J.T. Tanner and J. Yin, Organometallics, 9 (1990) 595.

10 (a) K. Wade, Adv. Inorg. Chem. Radiochem., 18 (1976) 1; (b) D.M.P. Mingos and R.L. Johnston, Structure and Bonding, Springer Verlag, Berlin and Heidelberg, 1987.
11 V. Crocq, Thesis, University of Paris VI, 1989.
12 B. Heim, Thesis, University of Paris VI, 1992.
13 A solution of 2 in hexane, heated for 4 h at $80^{\circ} \mathrm{C}$, does not afford 3.

14 M. Gouygou, C. Tachon, R. Fl Ouatib, O. Ramarijoana, G. Etemad-Moghadam and M. Koenig, Tetrahedron Lett., 30 (1989) 177.

15 N. Walker and D. Stuart, Acta Crystallogr., 39 (1983) 158.
16 D.J. Watkin, J.R. Carruthers and P.W. Betteridge, Crystals, an Advanced Crystallographic Program System, Chemical Crystallog. raphy Laboratory, University of Oxford, 1988.
17 International Tables for X-ray Crystallography, Vol. IV, Kynoch Press, Birmingham, U.K., 1974.
18 G.M. Sheldrick, shelxs 86, Program for Crystal Structure Solution, University of Göttingen, 1986.
19 E. Prince, Mathematical Techniques in Crystallography, SpringerVerlag, Berlin, 1982.


[^0]:    Correspondence to: Dr. M. Gouygou.

[^1]:    * Reference number with asterisk indicates a note in the list of references.

[^2]:    ${ }^{\text {a }}$ Interatomic distances are in $\AA$.

